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The polarization field is commonly believed to
be detrimental for the LED efficiency
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Nonpolar and semipolar LEDs

8.1.5 Advantages of nonpolar and semipolar LEDs

The QCSE imposes a limit on device performance for c-plane LEDs. To circumvent the
detrimental effects of the internal polarization, growing devices along orientations that
have zero or minimal polarization has been proposed as the solution for many unsolved
issues. When there are no polarization-induced electric fields in the QW, the IQE is
enhanced and there is an improved overlap between carrier wave functions. The QWSs can
be grown thicker without much reduction of the IQE as long as the defect density is not
significantly increased. Therefore, the unbalanced carrier transport in MQW devices
resulting from the over-thin QWs can be mitigated. Additionally, lower polarization



LED efficiency

Impact of the large internal electric field

Fow = 2-3 MV/cm
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Important: 7y is inversely proportional to the e-h wavefunction overlap A. David et al,, Phys. Rev. Appl. 11, 031001 (2019)
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= Blue LEDs are extremely efficient
= WPE > 80% (IQE > 90%)
= White LEDs with record luminous efficacy of 300 Im/W
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= InN bandgap of 0.65 eV

= InGaN alloy covers the whole visible spectrum
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= InGaN MicroLEDs for RGB displays

1. Less sensitive to sidewall non-radiative recombination
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How to push the
wavelength to the

Red ?
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QW emission wavelength (nm)

How to push the wavelength to the Red ?

= InGaN/GaN QW emission wavelength

2 3 4 5 6 7
QW thickness (nm)

The indium
content must be
larger than 30%
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Eow =

EInGaN + E

conf "

x=15% =>F = 1.5 MV /cm

Red emission (~610 nm) with 15% In and L,, = 8 nm
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Hajdel ef a/., Materials 15,237 (2022)
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= Screening of the
electric field induces a
strong blue-shift

= L, lower than 4 nm/
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QW emission wavelength (nm)
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How to push the wavelength to the Red ?
= InGaN/GaN QW emission wavelength
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InGaN on GaN
critical thickness

G.Ju etal., APL 110, 262105 (2017)
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. less than 35% In
composition is normally
reported.”

N. Hu etal., APL 121, 082106 (2022) - Amano’s group
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= The parameter space for

red LEDs is quite limited

In content = 30-35%
L,=3-3.5nm

~

J




-
(]

£PFL  How to push the wavelength to the Red ?
= Red-LEDs on GaN/sapphire template
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© 2014 : Toshiba J.-I. Hwang et al, APEX 7, 071003 (2014)
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At high current density, due to the
field screening and band filling, the
emission is barely red (610 nm)
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How to push the wavelength to the Red ?
= Red-LEDs on GaN/sapphire template
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» Reduce the emission linewidth
= Improve the efficiency

\_

= Extend further the emission wavelength

Higher In content = Decrease the strain
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D. lida et al,, AIP Advances 12, 065125 (2022) EL peak # dominant wavelength



=PFL  Less strain for more indium

= Strain relaxation from surface morphology and growth on Si(111)
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= Growth on silicon

= tensile strain
= Large V-pits

= strain relaxation
= Lateral hole injection

F. Jiang et al., Photonics Research 7, 144 (2019) - Nanchang U.
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Large devices 1x1 mm?

S. Zhang et al., Photonics Research 8, 1671 (2020)
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100 nm InGaN seed (3%)

Less strain for more indium

= Pseudo-InGaN substrate (InGaNOS)
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CEA/LETI and Soitec  paper 12441-20

- The InGaN layer is patterned to enable strain relaxation

- 200nm-thick In,Ga,_,N (x=0.015-0.08) layer on GaN/sapphire
- Transferred using Soitec’s Smart Cut™ technology onto a

ﬂ In content ~40%

blueshift
IQE = 10%

= 650 nm with small

EQE = 0.14% (with a LEE<4%)
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— InGaN DL
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Less strain for more indium

= Pseudo-InGaN substrate via decomposition layer
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Normalized Intensity
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= 770 nm at low current
= 633 nm at 200 A.cm2

EQE = 0.05% (due to poor
surface morphology)
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Less strain for more indium

= Strain relaxation from porous GaN
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=PFL  Conclusion

= WPE of InGaN based LEDs — state of the art
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< The green gap is closing
< The lll-nitrides may compete for red microLEDs
_ < InGaN pseudo-substrates are needed.
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Laser diodes

Electrical injection

n=Jt/qd

A few remarks:

The effective recombination time 7depends on the carrier density
The Auger recombination term is significant only at high injection

The carrier density depends on the active region thickness

Geometry of the active region:

homojunction: d=Lj,+L,,(1-10 um) (No RT operation)
heterojunction: d = 100 nm
guantum well: d =1-10 nm

17



Laser diodes

Population inversion

N increases with the current

n= Tpc(E) }EEFTIE

P {
14+t ¥

EFc (EFv) 1\

and the absorption is given by

a(®) = -y (@) = ay(o)| f,(ho) - f.(ho)]  where yis the gain

When « is negative = stimulated emission

fu(hw)>f,(ho) = | E, —E,>2ho>E,

Bernard-Duraffourg condition



Laser diodes

Transparency threshold

50

GaAs

S50

e~ Epy) - Eg (meV)

Transparency threshold
# Lasing threshold

-150

Laser threshold

1,0

Carrier density (cm3)

1,5

2.0%10"

The material becomes transparent when

E, -E, =E,

Minimum requirement to fulfill the
Bernard-Duraffourg condition

t=1um = J, ~16kA/cm’ bulk (1960)
t=100nm = J_~1.6KkA/ cm’  heterostructure (1970)
t=10nm = J_~160A/cm’ quantum well (1980)

gain = losses = 'y, (hv) = a,+ 1/(2L) x In(1/R,R,)

Modal gain
I is the confinement factor

19



Edge-emitting laser diode

Laser cavity

Resonant cavity = optical feedback

Cavity length

Mirrors Standing EM wave

The mirrors are achieved by crystal cleavage. This defines atomically flat planes.

The reflectivity is given by R, = (n,-1)?/ (n,+1)* e.g., for GaAs, R,=0.32

Width of the cavity
Electrical

Matal hsad W/ Upper cladding
active region (QW)

Lower cladding

Juneticn

The facet reflectivity is further increased by dielectric surface coating (DBRs). sccy Sporn Dot W F—————— 7

10.0kV 3.0 40000x SE




Edge-emitting laser diode

Laser diode structure

p-contact ridge 4
passivation

SCL
n-contact

p-contact-
layer

active
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cladding-
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n-contact-
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Light confinement
Electronic
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/ ]\ SCH IaSEF

VB energy profile
= “n,, profile”
cladding waveguide

\ 4
N

SCH: separate confinement
heterostructure
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Edge-emitting laser diode

Confinement factor and modal gain

n-type
electrode

active region

AlGaN:Mg /[
cladding SiO, isolation
GaN:Mg
Waveguide

AlGaN barrier
InGaN MQWs

GaN:Si
Waveguide

1um cladding “ GaN |
s rate n |

AlGaN/GaN SL

The confinement factor (I') is given by the
overlap between the optical mode and

the active region (e.g. QWs):

[CIE@)| dx
—d

r=—4 >
J_IEM)] dx

For a QW-based LD (SCH), I' =0.5-5%
For a double heterostructure (DHS), I' ~ 1 (d = 100 nm)

Then, the modal gain is

Ym =1V

22



Edge-emitting laser diode

Laser threshold

In an ideal case, i.e. without any losses, the laser threshold would be the transparency threshold (n,.=n,,,)

However, in real devices, parasitic absorption is always present (n,. < n,,)

The laser threshold is then defined as Gain = Losses

PN

=T
Ym Y - Internal losses (parasitic light absorption, eg. not the active region)
y Increases with - Mirror losses
injected current
4 Mirror losses )

Condition for lasing:  Modal gain = losses = ['};,. = &, + 1/(2L) x In(1/R,R;)

Modal gain  Parasitic losses

\_ R, R, are the mirror reflectivity /

23



Edge-emitting laser diode

Laser threshold

‘ 100 ; T T T T T T T T
_-é‘ ' 90 - —— 445 nm I'=3% 7
2 ‘ go | £ —— 520 nm I=3% ]
o | . L ------ 520 nmI'=4% |
o | < 70f}% 520 nm I'=5% -
a— £ - B Commercial lasers
5 3 Tk
= [
8 : S a0
| [0} - .
S ® 30t {:
2 20|
O ol
-!E L
— o - > %0 "~ 200 400 600 800 1000
Active region thickness Laserlength (m)
For a given laser diode size, there is a minimum Evolution of the laser threshold as a function of
threshold current density which is determined by cavity length, confinement factors, and
the tradeoff between carrier density in the active different emission wavelengths

region and the confinement factor.



Edge-emitting laser diode

Light output characteristics
1. Below the transparency threshold: linear dependence with the current

2. Above the transparency threshold: amplified spontaneous emission (ASE),
= superluminescence Nir < N < Ngpyr

3. When I'y(modal gain) equals the losses: laser oscillations start (strong linewidth reduction)
Important: once the lasing threshold is reached, the carrier density is clamped (7 is constant)

L each newly added electron gives rise to 1 stimulated photon (x IQE)

Mo

ﬁ Meuil
J

S is the number of stimulated
photons in the cavity

25



Edge-emitting laser diode

Lasing and amplified spontaneous emission

Laser diode versus superluminescent LED

oo
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Note: a superluminescent LED (SLED) is a laser diode structure
without any internal light reflection (no cavity effect=no feedback)

https://www.exalos.com/ https://www.exalos.com/bridge-the-gap-superluminescent-leds/


https://www.exalos.com/

Edge-emitting laser diode
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better blue and green lasers

WPE > 50% at 450 nm
WPE > 25% at 525 nm
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VCSELs

Vertical cavity surface emitting laser (VCSEL)

7x Ti0,/Si0,

Bottom DBR
41.5x
InAIN/GaN

Appl. Phys. Lett. 101, 151113 (2012)

Mag= 1057 KX

m WPE vs I, of blue VCSELSs
5 March 2021 _This work

- - _ 15 =
Blue and green GaN-based vertical-cavity g I K & Nichin
- - - > [1]

surface-emitting lasers with AliInN/GaN DBR g f ) « Stanley

Q i * A
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